21 may 2017

El Lego atómico de Ketterle

Nota: La entrada es un complemento (y no un sustituto) de la conferencia de Wolfgang Ketterle que encontrarás al final.

Wolfgang Ketterle es un físico alemán formado en Munich y profesor en el MIT que ganó el Nobel en 2001 “por conseguir la condensación de Bose-Einstein en gases diluidos de átomos alcalinos y por sus tempranos y fundamentales estudios de propiedades de los condensados”. Como era de esperar, la charla que impartió el 10 de mayo en el Aula Magna de la Facultad de Ciencias Físicas (UCM) giró en torno al comportamiento electromagnético (ya que, en órdenes de magnitud del tamaño atómico, el resto de fuerzas fundamentales son casi despreciables) de la materia a temperaturas cercanas al cero absoluto. Ketterle introdujo y esbozó numerosos conceptos sin profundizar demasiado en ninguno; por lo que, a mi juicio, la función principal de la charla fue presentar abundantes ideas para que el oyente interesado las investigue por otros medios. A mí me llamaron especialmente la atención dos de ellas: el efecto Hall cuántico (entero y fraccionario) y la mariposa de Hofstadter.

La conferencia fue preludiada por Fernando Sols, catedrático de Física de la materia condensada en la UCM, que resaltó que el nobel de Física cambió de área de investigación al principio de su carrera, lo cual habría sido burocráticamente impensable en España, debido a la ineficiente rigidez de nuestro sistema de becas. Ketterle empezó mencionando el motivo para enfriar casi al máximo los átomos: se minimizan las interacciones (en sus condiciones de trabajo, comentó que éstas tenían un comportamiento casi idéntico a la delta de Dirac), lo que facilita su manipulación, permitiéndonos simular materiales y estudiarlos en profundidad (como él comentó, “I have the coolest Lego pieces you can imagine”). Asimismo, es interesante estudiar el comportamiento atómico de sistemas de muchas partículas, en contraste con otras líneas de investigación como la del CERN, que experimenta con partículas aisladas.

Foto que saqué a una diapositiva de Ketterle (de ahí su resolución)

Una clave fundamental implícita en la charla (en la que, desgraciadamente, Ketterle no hizo hincapié) es el doble papel del láser: por un lado, nos permite estudiar la estructura interna de un cuerpo, observando la red de difracción proyectada al atravesarlo con un haz (se puede profundizar en el tema leyendo este divulgativo artículo sobre la determinación de la estructura interna de una pluma mediante difracción). Por otro, sirve para enfriar los átomos. Este fenómeno puede parecer sorprendente, ya que un láser suele aportar energía al sistema: en las obras de ciencia ficción, siempre se usa para calentar (¡y mucho!).


¡¿Cómo que el láser enfría?! [creo que se da por hecho, pero... Foto utilizada sin permiso de Lucasfilm™]


Vamos a ver cómo, mediante efecto Doppler, podemos reducir el momento lineal (producto de la masa por la velocidad: p=m v) de un conjunto de átomos (lo cual es el equivalente microscópico de enfriar). Primero, hemos de comprender el propio efecto Doppler: cuando un objeto se desplaza en sentido opuesto al de propagación de una onda, percibe que la frecuencia de la misma aumenta, ocurriendo lo contrario si se mueven en la misma dirección y sentido. Por eso, cuando se aleja una ambulancia, escuchas su sirena más grave que cuando se acerca.

Visualización del efecto Doppler 
[GIF de Charly Whisky 18:20, 27 enero 2007 - Own work, CC BY-SA 3.0]

Asimismo, hemos de tener en mente que un átomo sólo absorbe radiaciones de frecuencias muy concretas (las que hacen que su corteza entre en resonancia), motivo por el que, por cierto, vemos las cosas de distintos colores. Cuando un átomo absorbe luz, su momento lineal varía, puesto que se suma al del haz incidente. Piénsalo así: si atropellas a alguien y el cadáver se queda pegado al parachoques, tu velocidad disminuye porque el momento lineal (p) siempre se conserva y la persona, o lo que queda de ella, sólo contribuye a la ecuación p=m v añadiendo masa (y a p constante, si aumenta la masa, disminuye la velocidad).

Combinando estos dos conceptos, tenemos una técnica potentísima para refrigerar átomos, que se visualiza genial en esta imagen:

Imagen de Cmglee - Own work, CC BY-SA 3.0

Las condiciones experimentales son las siguientes: tenemos un conjunto de átomos moviéndose en direcciones arbitrarias que entran en resonancia con (es decir, absorben) la luz azul. Los iluminamos con luz verde que se mueve de derecha a izquierda. Este es el desarrollo esquematizado por la imagen:


  1. Si un átomo no se mueve significativamente en la dirección del haz, no se produce efecto Doppler y percibe el haz verde con su frecuencia original, por lo que no hay absorción y su momento no varía.
  2. Si un átomo se mueve en el sentido del haz, percibirá una frecuencia más baja y tampoco lo absorberá. Su momento tampoco varía.
  3. 1. Si un átomo se mueve lo suficientemente rápido en sentido contrario al del haz, percibirá una frecuencia alta (azul) y absorberá la radiación. Como el momento del haz tiene sentido opuesto al del átomo, su momento disminuirá (y con él, su velocidad). Las dos últimas imágenes ilustran la reemisión del fotón absorbido.

El equipo de Ketterle no utiliza este método concreto de enfriamiento por láser, pero es el más sencillo de captar.


Para concluir, cuando escribo sobre matemáticas o física fundamental, siempre insisto en que la investigación en ciencia básica no está orientada a resultados directos, aunque siempre acabe teniendo muchas aplicaciones. Los desarrollos de Cornell, Wieman y Ketterle (los tres galardonados), además de ser espectaculares desde el punto de vista teórico (permiten estudiar la superfluidez y crear láseres atómicos) abren la puerta a importantísimas aplicaciones prácticas como la simulación cuántica de materiales y la medición ultra precisa, gracias al minucioso control del momento y la posición de las partículas a una temperatura tan solo millonésimas de grado centígrado (o de Kelvin, para los cientófilos) superior al cero absoluto, la mínima temperatura posible.


Como advertía al principio de la entrada, ésta está inspirada en la siguiente charla, que os recomiendo escuchar:








Fuentes y lectura recomendada

Entrevista Wolfgang Ketterle durante su visita a Madrid:



No hay comentarios:

Publicar un comentario